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ABSTRACT  

As the overall traffic increased in urbanized areas, so did the number of roads, bridges and routes in 

general. This increase in the number of bridges led to a larger number of bridge collapses. Over time, 

degradation of bridge components through fatigue (the main cause of failures of metallic structures) will 

take place, and undetected defects increase the rate at which the bridge degrades. This degradation needs to 

be estimated regularly and accurately using sophisticated monitoring systems. Ideally, computational 

models would be able to compute the impact of a vehicle crossing the bridge. Therefore, the aim of this 

thesis is to develop a model that accurately predicts the dynamic behavior caused on a bridge, with certain 

properties and geometries, by a vehicle with certain parameters. This model is then tested and applied to a 

case study (the Várzeas bridge structure), by computing the signals (or cycles) produced on this structure 

and comparing these signals with real signals measured by sensors. When this comparison is performed, the 

computational signals are very different from the real signals. However, by fitting the computational signals 

to the corresponding real signals, the optimized physical parameters (properties and geometries) for the 

model are obtained. On the one hand, the model appears to be valid, seeing that the accuracy of the 

computational signals can be controlled by fitting the bending stiffness of the structure, but on the other 

hand controlling the accuracy is very difficult without a significant amount of traffic data. Finally, this 

paper provides a computational procedure, which needs to include an optimization procedure of the 

physical parameters in future work. 

Keywords: bridge structures, Euler-Bernoulli beam, dynamic model, MATLAB, computational model, 

fatigue, vehicle traffic, maintenance.  

 

1. INTRODUCTION 

Every year, a large number of bridges experience 

failure around the world [4]. The most recent major 

collapse occurred on August 14th, 2018, in Genoa 

(Italy), whose collapse caused at least 43 fatalities. 

According to the preliminary report of the 

collapsed Morandi bridge, this structure 

experienced failure due to a combination of factors, 

namely poor design, questionable building practices 

and insufficient maintenance [13].  

Another famous bridge collapse also occurred in 

the current year (March 15th, 2018), in Florida 

(United States). This collapse resulted in 6 fatalities 

and 9 major injuries. In the preliminary report of 

the pedestrian bridge, it is mentioned that it 

collapsed during re-tensioning of the diagonal 

members on its north and south ends, as part of the 

design plans [2]. The bridge failed due to the 

initiation and propagation of a crack in the diagonal 

member of the north end. Whether this crack 

initiated because of the bridge design, construction 

process or materials used is still unclear. 

At least 90% of all failures of metallic structures, 

including bridges, aircrafts and machine 

components, are caused by fatigue [10]. This 

percentage can be reduced by increasing the 

infrastructure budget, not only to increase the 

quality and quantity of inspections, but also to fix 

every defect detected by these inspections, no 

matter how small it seems. If this is unfeasible, or 

even impossible, other solutions to this problem 

must be thought and implemented, thereby 

reducing the significant amount of lives lost due to 

bridge collapses. 
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1.1 Objectives 

The objective of this paper is the development of a 

dynamic analysis of a beam under moving loads to 

support a monitoring system for a given bridge 

structure, with the aim to predict the acceleration 

and strain cycles when a vehicle passes over it. This 

computational model is then applied to a case study 

of a bridge structure in Várzeas, by computing the 

signals (or cycles) produced on this structure and 

comparing these signals with real signals measured 

by sensors. 

 

1.2 Document Structure 

Including the introduction, this document is divided 

into six sections. Section 2 introduces the Euler-

Bernoulli beam and the simply supported plate, 

which consist of structures that can be used as an 

approximation for more complex structures, for 

example bridges. The main objective of section 3 is 

to develop a computational model that returns the 

deformed shape of the bridge along time, caused by 

a passing vehicle, which is simulated by a set of 

moving loads. Section 4 analyzes the bridge 

structure of a case study, being that this structure is 

then used to estimate the acceleration and 

deformation signals computationally. In section 5, 

the results obtained by conducting several tests are 

explored and discussed using the computational 

model. Finally, section 6 presents the main 

conclusions withdrawn from the paper, as well as 

its limitations and respective improvements that can 

be implemented with future work. 

 

2. LITERATURE REVIEW 

Araújo and Silvestre (2014) affirmed that the 

transversal shear deformations can be neglected for 

thin plates and beams. In practice, this means that 

the cross-sections normal to a beam’s axis before 

deformation remain plane and normal to the axis 

after deformation. 

Reddy (1994) described the Euler-Bernoulli beam 

model extensively, which neglects the effects of 

transverse shear deformation. While this model is 

appropriate for thin beams, it is not appropriate for 

beams with a large thickness. Reddy also provided 

the stiffness matrix and force vector for an Euler-

Bernoulli beam element, which are obtained using 

its governing equations, as well as the assembly 

method used to obtain the displacements of every 

node, when this beam is subjected to static loads. 

Do et al. (2017) provided the dynamic component 

of the differential governing equation of the Euler-

Bernoulli beam. This time-dependent term is used 

to obtain the mass matrix of an Euler-Bernoulli 

beam element. 

Finally, Lee et al. (2017) provided the equation of 

motion which governs the vertical vibration of thin 

plates. This governing equation allows to calculate 

the natural frequencies of a thin plate with certain 

boundary and initial conditions. 

 

3. COMPUTATIONAL MODEL 

The acceleration and deformation signals produced 

by a vehicle can be estimated computationally. In 

its turn, the physical quantities required to estimate 

these signals (accelerations and displacements) are 

calculated for each instant of time using the finite 

element method. Observing that the equations of 

motion are solved using a numerical method, in 

which time is not treated as a continuous variable, 

but rather as a discrete variable, the points in time 

between the initial and final instants are separated 

from each other by a time step, or increment. This 

initial time instant corresponds to the moment when 

the front axle of a vehicle comes in contact with the 

bridge. Assuming a constant velocity 𝑣, every axle 

of a vehicle moves with the following distance 

increment: 

∆𝑥 = 𝑣 ∙ ∆𝑡 (1) 

where ∆𝑡 is the time increment, and 𝑣 is the 

vehicle’s velocity. 

Each axle supports a certain percentage of the 

vehicle’s weight and exercises a certain force on 

the bridge, as described by the following equation: 

𝑓0 = 𝑚 ∙ 𝑔 (2) 

where 𝑔 is the gravitational acceleration, and 𝑚 and 

𝑓0 are the weight that is supported and force that is 

exercised on the bridge by a specific axle, 

respectively. 

An axle’s position can be defined by global or local 

coordinates. While the global coordinates are 
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relative to the beam, the local coordinates are 

relative to a specific element. To use finite 

elements, the force applied on an element needs to 

be converted into a vector of equivalent loads 

applied on the degrees of freedom of the respective 

element. This vector of nodal loads is obtained with 

the following equation: 

{

𝑓𝐿

𝑀𝐿

𝑓𝑅

𝑀𝑅

} = {𝑁} ∙ 𝑓0 (3) 

where {𝑁} represents the shape functions. 

The shape functions are defined as follows: 

{𝑁} = {

𝑁1

𝑁2

𝑁3

𝑁4

} (4) 

𝑁1 = 1 − 3 (
𝑥

𝑙
)

2

+ 2 (
𝑥

𝑙
)

3

(5) 

𝑁2 = 𝑥 (
𝑥

𝑙
− 1)

2

(6) 

𝑁3 = 3 (
𝑥

𝑙
)

2

− 2 (
𝑥

𝑙
)

3

(7) 

𝑁4 = 𝑥 ((
𝑥

𝑙
)

2

−
𝑥

𝑙
) (8) 

where 𝑙 is the length of an element, and 𝑥 

represents the local coordinates of an axle. 

Once the nodal loads for each element and instant 

have been determined, the global load vector can 

also be assembled for each instant. Likewise, the 

global stiffness and mass matrices are calculated by 

assembling every elemental stiffness and mass 

matrix, respectively.  

After that, the global stiffness and mass matrices 

are used to obtain the global damping matrix, with 

the Rayleigh damping theory [12]. Finally, the 

deformed shape of the bridge along time, which 

depends on the displacements, velocities and 

accelerations, is determined using Newmark’s 

method [7]. This method requires the global load 

vector and the global stiffness, mass and damping 

matrices. When the deformed shape of the bridge 

along time is determined, the accelerations and 

deformations at half span are used to estimate the 

signals. 

 

3.1 Rayleigh Damping Theory 

Rayleigh damping is included in the viscous 

damping model and is defined as follows: 

[𝐶] = [𝑀] ∑ 𝛼𝑘([𝑀]−1[𝐾])𝑘

𝑝−1

𝑘=0

(9) 

where 𝑝 is the number of terms with a non-negative 

indexed coefficient. 

This is a reasonable approximation for a reduced 

damping. By applying an orthogonal transformation 

to (3.9), the following equation is obtained: 

[𝜑𝑇][𝐶][𝜑] = ∑ 𝛼𝑘𝜔𝑛
2𝑘−1

𝑝−1

𝑘=0

(10) 

where 𝜔𝑛 and 𝜉𝑛 represent the bridge’s natural 

frequencies and their corresponding damping ratios, 

and the columns of [𝜑] are normalized mode shapes 

of the system. 

The simplest Rayleigh damping is obtained when 

𝑝 = 2. This damping matrix is proportional to both 

the stiffness and mass matrices. 

[𝐶] = 𝛼0[𝑀] + 𝛼1[𝐾] (11) 

2𝜉𝑛 = 𝛼0𝜔𝑛
−1 + 𝛼1𝜔𝑛 (12) 

To determine the coefficients 𝛼0 and 𝛼1, at least 

two values for the natural frequency, as well as 

their corresponding damping ratios, are needed. 

 

3.2 Newmark Method 

The Newmark method is a direct integration 

method that uses the following assumptions: 

{�̇�𝑛𝑐}𝑡+∆𝑡 = {�̇�𝑛𝑐}𝑡 +
[(1 − 𝛿){�̈�𝑛𝑐}𝑡 + 𝛿{�̈�𝑛𝑐}𝑡+∆𝑡] ∙ ∆𝑡 (13)

 

{𝑥𝑛𝑐}𝑡+∆𝑡 = {𝑥𝑛𝑐}𝑡 + {�̇�𝑛𝑐}𝑡 ∙ ∆𝑡 +

[(
1

2
− 𝛼) {�̈�𝑛𝑐}𝑡 + 𝛼{�̈�𝑛𝑐}𝑡+∆𝑡] ∙ ∆𝑡2 (14)

 

where 𝛼 and 𝛿 are the parameters that influence the 

accuracy and stability of the integration, {𝑥𝑛𝑐} are 

the linear and angular displacements of the non-

constrained nodes, ()̇ represents a derivative with 

respect to time, and ∆𝑡 is the time increment. 

Solving from (3.14) for {�̈�𝑛𝑐}𝑡+∆𝑡, the following 

equation is obtained: 
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{�̈�𝑛𝑐}𝑡+∆𝑡 =
1

𝛼∆𝑡2
({𝑥𝑛𝑐}𝑡+∆𝑡 − {𝑥𝑛𝑐}𝑡) −

1

𝛼∆𝑡
{�̇�𝑛𝑐}𝑡 − (

1

2𝛼
− 1) {�̈�𝑛𝑐}𝑡 (15)

 

The only variable left to determine to solve the 

system at time 𝑡 + ∆𝑡 is {𝑥𝑛𝑐}𝑡+∆𝑡. To do that, 
{�̈�𝑛𝑐}𝑡+∆𝑡 from (3.15) and {�̇�𝑛𝑐}𝑡+∆𝑡 from (3.13) need 

to be substituted into the equations of motion at 

time 𝑡 + ∆𝑡: 

[𝑀𝑛𝑐]{�̈�𝑛𝑐}𝑡+∆𝑡 + [𝐶𝑛𝑐]{�̇�𝑛𝑐}𝑡+∆𝑡 +
[𝐾𝑛𝑐]{𝑥𝑛𝑐}𝑡+∆𝑡 = {𝑓𝑛𝑐}𝑡+∆𝑡 (16)

 

[𝐾]{𝑥𝑛𝑐}𝑡+∆𝑡 = {𝑓𝑛�̂�}
𝑡+∆𝑡

↔

{𝑥𝑛𝑐}𝑡+∆𝑡 = [𝐾]
−1

{𝑓𝑛�̂�}
𝑡+∆𝑡

(17)
 

where [𝐾𝑛𝑐], [𝑀𝑛𝑐] and [𝐶𝑛𝑐] are the resultant 

stiffness, mass and damping matrices, respectively, 

after eliminating the rows and columns 

corresponding to the constrained degrees of 

freedom, and {𝑓𝑛𝑐} is the resultant load vector after 

eliminating the rows corresponding to the 

constrained degrees of freedom. 

The parameters [𝐾] and {𝑓𝑛�̂�}
𝑡+∆𝑡

 can be solved by 

treating {�̈�𝑛𝑐}𝑡+∆𝑡 and {�̇�𝑛𝑐}𝑡+∆𝑡 as functions of 
{𝑥𝑛𝑐}𝑡+∆𝑡, {𝑥𝑛𝑐}𝑡, {�̇�𝑛𝑐}𝑡 and {�̈�𝑛𝑐}𝑡. Now that the 

system is solved, the following algorithm can be 

applied: i) start the procedure with 𝑡 = 0, ii) 

determine {𝑓𝑛�̂�}
𝑡+∆𝑡

, iii) calculate the displacements 

at time 𝑡 + ∆𝑡 with (17), iv) obtain the accelerations 

and velocities at time 𝑡 + ∆𝑡 using (15) and (13), 

respectively, v) repeat until 𝑡 = 𝑡𝑚𝑎𝑥. 

 

4. CASE STUDY 

The bridge structure explored in the present case 

study is located near Luso (Figure 1). 

 

 

 

 

 

 

 

 

This bridge’s main components are the longitudinal 

and cross girders, profiled sheet, reinforcements, 

concrete slab and bituminous pavement. Some of 

these components are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

Information about the main components from the 

descriptive memory [3] is presented in Tables 1 and 

2, and its properties are presented in Tables 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Profiled sheet, longitudinal and cross girders. 

Figure 1: Case study bridge location (Luso). [1] 

Table 2: Information about the main components (2). 

Table 1: Information about the main components (1). 
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4.1 Sensors 

Several accelerometers and extensometers, as well 

as other sensors that measure weather related 

values, namely relative humidity, precipitation, 

temperature and wind speed, have been 

strategically placed on the bridge under study, as 

can be observed in Figure 3 and Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The weather sensors are activated periodically, but 

the accelerometers and extensometers are only 

triggered when a vehicle starts crossing the bridge. 

When triggered, these last sensors collect data for 5 

seconds, or signals, with a frequency of 50 𝐻𝑧. 

Both the acceleration and the deformation signals 

depend on the number of axles, weight and velocity 

of the passing vehicle, as well as on the weather 

conditions. While the vehicle parameters affect 

their amplitude, the weather conditions affect their 

mean value. Typical acceleration and deformation 

signals measured by the movement sensors are 

shown in Figure 5 and Figure 6, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Information about the main components (1). 

Table 4: Information about the main components (2). 

 

Figure 3: Visible extensometers (strain gauges). 

Figure 4: Weather sensors. 

Figure 5: Typical acceleration signal. 

Figure 6: Typical deformation signal. 
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4.2 Simplified Bridge Model 

A beam is defined by its density (𝜌), Young’s 

modulus (𝐸), length (𝐿), cross-sectional area (𝐴) 

and second moment of inertia (𝐼). Considering that 

a vehicle only causes appreciable deformation 

along its width, and that the width of an average 

vehicle is approximately two meters, the beam’s 

width is also defined as 𝑏 = 2 𝑚. Using this value, 

as well as the information presented in Table 1 and 

Table 2, the beam’s properties and geometries are 

as follows: 

• 𝝆 =
𝒎

𝑽
= 𝟐𝟗𝟒𝟎 𝒌𝒈/𝒎𝟑 

• 𝑨 =
𝒃

𝑩
∙

𝑽

𝑳
= 𝟎. 𝟓𝟒𝟓𝟏 𝒎𝟐 

• ℎ =
𝐴

𝑏
= 0.2726 𝑚 

• 𝑰 =
𝟏

𝟏𝟐
∙ 𝒃 ∙ 𝒉𝟑 = 𝟑. 𝟑𝟖 ∙ 𝟏𝟎−𝟑 𝒎𝟒 

where 𝑚 and 𝑉 are the bridge’s mass and volume, 

respectively, when only the main components are 

considered, 𝐵 = 9 𝑚 and 𝐿 = 19 𝑚 are the bridge’s 

width and length, respectively, and ℎ represents its 

equivalent thickness. 

The only property left to determine is Young’s 

modulus. Since the natural frequency of a structure 

is proportional to its vibration constant, being that 

the respective slope depends on Young’s modulus, 

this property can be obtained by plotting a natural 

frequency versus plate vibration constant graph, 

using the vibration data collected from the bridge 

presented in Table 5. 

 

 

 

 

 

 

• 𝑬 = 𝟔𝟒. 𝟐 𝑮𝑷𝒂 

4.3 Rayleigh Damping 

To calculate the Rayleigh damping, values for the 

damping ratios corresponding to certain frequencies 

are required. These values are presented in Table 6. 

 

 

 

 

 

 

 

The frequency from the second row is similar to the 

frequency from the first row, but their 

corresponding damping ratios are very different, 

which reveals a lack of precision of the measured 

damping ratios. This also indicates that the 

damping ratios corresponding to the frequencies 

contained within [8.25, 9] 𝐻𝑧 probably range from 

𝜉 = 0.579 % to 𝜉 = 2.391 %. As such, the following 

values are considered: 

• 𝜔 =
8.25+9

2
= 8.625 𝐻𝑧 

• 𝜉 =
2.391+0.579

2
= 1.485 % 

This set of values is as good an estimate as other 

sets of values contained in the intervals mentioned 

above, seeing that determining their accuracy is 

impossible. The coefficients required to estimate 

the Rayleigh damping matrix are determined by 

introducing these values into (3.10). 

 

5. RESULTS 

Several classes of vehicles can cross a bridge, 

including: motorcycles, cars, vans, single unit 

trucks and buses, and single and multi-trailer 

trucks. Information withdrawn from a passage log 

created on May 10th, from 10:40 AM to 1:10 PM, 

can be observed in Table 7. A passage log is a 

document where the time a vehicle starts crossing 

the bridge is registered, as well as the time it takes 

to cross the bridge. Table 5 also contains estimates 

for the weight of each type of vehicle. 

In addition to the vehicle’s weight, its number of 

axles and the distance between each axle are also 

required to estimate the acceleration and 

deformation signals that they produce. Estimates 

for these variables are presented in Table 8 for the 

relevant vehicle types. Small motorcycles and cars 

are considered irrelevant, due to their small weight 

and percentage of passages. 

Table 5: Bridge’s vibration data. 

Table 6: Damping ratios and respective frequencies. 
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Distances 𝑑1−2 and 𝑑2−3 represent the distance 

between the first and second axle, and the distance 

between the second and third axle, respectively. 

 

5.1 Relevant Signals for the Case Study 

The relevant signals for the case study are the ones 

produced by the relevant vehicle types travelling at 

their respective average velocities. These velocities 

are presented in Table 9. 

 

 

 

 

 

 

 

 

 

To estimate the signals produced by a vehicle, the 

weight supported by each axle is required. These 

weights can be obtained by applying the static 

equilibrium equations. In its turn, these equations 

are solved using the values from Table 5 and Table 

6 and the assumption that a vehicle’s center of mass 

is equidistant from its front and rear axles. The 

signals produced by a single unit truck/bus with 

three axles travelling at its average velocity is 

shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

The deformation (in terms of strain) is given by [5]: 

휀𝑥(𝑥, 𝑦, 𝑡) = −𝑦
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
(18) 

where 𝑤(𝑥, 𝑡) is the vertical displacement of the 

beam at position 𝑥 and instant 𝑡, and 𝑦 is the 

distance from the neutral axis. 

This strain signal can be observed in Figure 8. 

 

 

 

 

 

 

 

 

 

 

Table 9: Average velocity for each vehicle type. 

Table 7: Number of passages and estimates for the weight. 

Figure 8: Computational strain signal. 

Table 8: Number of axles and distance between axles. 

Figure 7: Signals produced by a three-axle bus. 
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5.2 Comparison Between Computational and 

Real Signals 

According to the passage log, a three-axle bus 

crossed the bridge at May 10th, 2018, 10:40 AM. In 

its turn, the data collected by the accelerometers 

and extensometers from January 1st to January 10th 

confirms that a certain vehicle crosses the bridge 

every three days at approximately 10:40 AM. As 

such, to validate the computational model, the real 

signals measured at 10:40 AM (every three days) 

must be compared to the computational signals 

estimated for a three-axle bus. During the ten days 

when the data was collected, the three-axle bus 

crossed the bridge at January 3rd, January 6th and 

January 9th. The deformation signals measured at 

January 3rd by the relevant extensometers can be 

observed in Figure 9 and Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the shape of the computational signal is 

similar to the shape of the signals measured with 

the relevant extensometers, their amplitudes are 

very different. 

 

5.3 Bending Stiffness 

If the case study structure is to be treated as a beam, 

its properties and/or geometry need to change, so 

that the real signals measured by the relevant 

extensometers fit their computational signal as best 

as possible. This fluctuation of properties and 

geometry can be performed by varying the bridge’s 

flexural rigidity or bending stiffness (𝐸𝐼). 

The initial value for the bending stiffness is 

obtained from the second moment of inertia and 

Young’s modulus determined in the case study 

section: 

• 𝐸 = 64.2 𝐺𝑃𝑎 

• 𝐼 = 3.38 ∙ 10−3 𝑚4 

• 𝐸𝐼 = 𝐸 ∙ 𝐼 = 0.217 𝐺𝑃𝑎 ∙ 𝑚4 

Figure 11 shows the computational signals varying 

with the bending stiffness, as well as the respective 

real signals. 

 

 

 

 

 

 

 

 

 

The smaller the bending stiffness is, the more 

accurate the computational signal is, until its 

amplitude reaches the same amplitude of the real 

signals. After that, decreasing the bending stiffness 

also decreases the accuracy. Also, fluctuating one 

variable is usually not enough to fit computational 

signals with the real signals, as it can be observed 

by the increase of the offset time with the 

amplitude. To adjust this time offset, other 

properties and geometries, such as the density and 

the cross-sectional area, respectively, have to be 

considered. While the computational model returns 

very inaccurate results for the properties and 

geometries calculated in section 4, it can be applied 

with a reasonable accuracy if these values are 

Figure 10: Real strain signal (2). 

Figure 9: Real strain signal (1). 

Figure 11: Real signals and computational signals. 
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optimized. In other words, this model appears to be 

valid, and its accuracy is heavily dependent on the 

optimization of its inputs. 

 

6. CONCLUSIONS AND FURTHER 

RESEARCH 

This final section presents the main conclusions 

withdrawn from the paper, as well as its limitations 

and respective refinements implementable in future 

work. 

 

6.1 Further Research 

The computational model appears to be valid for 

the case study bridge structure and, therefore, it 

might be useful for other bridge structures with 

similar characteristics. However, its accuracy 

depends heavily on an optimization fit which may 

not always be as easy to perform as in this thesis, 

depending on such factors as the available data and 

complexity of the structure, among others. 

Also, an SFSF plate (a rectangular plate that is 

simply supported on two opposite edges and free on 

the remaining edges) appears to be a good 

approximation for the case study structure, and in 

its turn a SSSS plate (rectangular plate simply 

supported on all edges) is a good approximation for 

a SFSF plate. However, a beam structure is an 

oversimplification for the case study bridge, if its 

properties and geometries are not optimized. 

 

6.2 Limitations 

The greatest limitation of the present work is the 

oversimplification of the beam structure to analyze 

bridge structures, which contain a higher 

complexity than a beam. Moreover, a major 

limitation consists of the lack of data about the 

traffic in the case study bridge, which is very 

important not only to estimate the computational 

signals during a certain period of time, but also to 

compare them to the corresponding real signals. In 

its turn, this comparison is essential to optimize the 

properties of a bridge structure defined as a beam.  

Other limitations include the lack of vibration data, 

in terms of natural frequency and damping ratio, as 

well as its low precision. These limitations made it 

very difficult to estimate an accurate global 

damping matrix, as evidenced by the time offset 

between the real signals and the computational 

signals, despite their similarity in terms of shape. 

Finally, the uncertainty of the loading and 

resistance data, namely the vehicle’s characteristics 

and the bridge’s properties and geometries, 

respectively, also constitute relevant limitations of 

the present work. 

 

6.3 Future Work 

Since a beam is a very simple structure, either its 

properties and geometries are optimized, or a more 

complex structure needs to be considered. 

Fully optimizing the characteristics of a bridge 

defined as a beam requires a significant amount of 

data about its usual traffic, as well as sensors that 

measure important variables, including 

accelerations and deformations, at strategic points. 

The quantity of sensors and their position depend 

on the complexity and size of the bridge. Obtaining 

this information is usually very difficult and, 

consequently, a full optimization procedure would 

be hard to obtain under such circumstances. 

Nevertheless, a computational optimization 

procedure should be developed to find the physical 

parameters by fitting the measured signals to the 

computational signals, allowing variations in the 

bending stiffness as well as damping constants. 

If the necessary time, resources and data to analyze 

a 3D structure are available, the bridge structure 

can be defined as a thick plate, for example. 

Otherwise, 2D structures may also be used, such as 

thin or moderately thick plates. 

As for the global damping matrix, it requires more 

vibration data and a greater precision of this data to 

be estimated with a higher accuracy. A larger 

amount of vibration data allows the application of 

more flexible Rayleigh damping models, such as 

the damping models described in subsection 3.2.2, 

as well as a more accurate application of the normal 

Rayleigh damping model described in subsection 

3.2.1. This data also needs to be more precise, since 

the expanded damping models are more sensitive to 

the natural frequencies and corresponding damping 

ratios than the normal damping model. 
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Furthermore, the uncertainty of the loading data 

given by the vehicles’ characteristics can be 

reduced by creating more frequent passage logs. 

These logs contain accurate information about 

passing vehicles, as well as the time they start 

crossing the bridge. Therefore, the acceleration and 

deformation signals measured by the movement 

sensors at a certain time can be associated to the 

corresponding vehicle. 
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